Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(17): 176402, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412257

RESUMO

Landau-level spectroscopy, the optical analysis of electrons in materials subject to a strong magnetic field, is a versatile probe of the electronic band structure and has been successfully used in the identification of novel states of matter such as Dirac electrons, topological materials or Weyl semimetals. The latter arise from a complex interplay between crystal symmetry, spin-orbit interaction, and inverse ordering of electronic bands. Here, we report on unusual Landau-level transitions in the monopnictide TaP that decrease in energy with increasing magnetic field. We show that these transitions arise naturally at intermediate energies in time-reversal-invariant Weyl semimetals where the Weyl nodes are formed by a partially gapped nodal-loop in the band structure. We propose a simple theoretical model for electronic bands in these Weyl materials that captures the collected magneto-optical data to great extent.

2.
Phys Rev Lett ; 117(13): 136401, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715109

RESUMO

We report on optical reflectivity experiments performed on Cd_{3}As_{2} over a broad range of photon energies and magnetic fields. The observed response clearly indicates the presence of 3D massless charge carriers. The specific cyclotron resonance absorption in the quantum limit implies that we are probing massless Kane electrons rather than symmetry-protected 3D Dirac particles. The latter may appear at a smaller energy scale and are not directly observed in our infrared experiments.

3.
Phys Rev Lett ; 112(4): 047402, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580490

RESUMO

BiTeI is a giant Rashba spin splitting system, in which a noncentrosymmetric topological phase has recently been suggested to appear under high pressure. We investigated the optical properties of this compound, reflectivity and transmission, under pressures up to 15 GPa. The gap feature in the optical conductivity vanishes above p∼9 GPa and does not reappear up to at least 15 GPa. The plasma edge, associated with intrinsically doped charge carriers, is smeared out through a phase transition at 9 GPa. Using high-pressure Raman spectroscopy, we follow the vibrational modes of BiTeI, providing additional clear evidence that the transition at 9 GPa involves a change of crystal structure. This change of crystal structure possibly inhibits the high-pressure topological phase from occurring.

4.
Sci Rep ; 3: 3446, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24336241

RESUMO

Fermi liquid theory is remarkably successful in describing the transport and optical properties of metals; at frequencies higher than the scattering rate, the optical conductivity adopts the well-known power law behavior σ1(ω) ∝ ω(-2). We have observed an unusual non-Fermi liquid response σ1(ω) ∝ ω(-1±0.2) in the ground states of several cuprate and iron-based materials which undergo electronic or magnetic phase transitions resulting in dramatically reduced or nodal Fermi surfaces. The identification of an inverse (or fractional) power-law behavior in the residual optical conductivity now permits the removal of this contribution, revealing the direct transitions across the gap and allowing the nature of the electron-boson coupling to be probed. The non-Fermi liquid behavior in these systems may be the result of a common Fermi surface topology of Dirac cone-like features in the electronic dispersion.

5.
J Phys Condens Matter ; 24(4): 045503, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22217443

RESUMO

Polarization dependent vanadium L edge x-ray absorption spectra of BaVS(3) single crystals are measured in the four phases of the compound. The difference between signals with the polarizations E perpendicular to c and E is parallel to c (linear dichroism) changes with temperature. Besides increasing the intensity of one of the maxima, a new structure appears in the pre-edge region below the metal-insulator transition. More careful examination brings to light that the changes start already with pretransitional charge density wave fluctuations. Simple symmetry analysis suggests that the effect is related to rearrangements in the E(g) and A(1g) states, and is compatible with the formation of four inequivalent V-sites along the V-S chain.

6.
Phys Rev Lett ; 106(21): 217001, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21699329

RESUMO

We report on the interplane c-axis electronic response of FeTe(0.55)Se(0.45) investigated by infrared spectroscopy. We find that the normal-state c-axis electronic response of FeTe(0.55)Se(0.45) is incoherent and bears significant similarities to those of mildly underdoped cuprates. The c-axis optical conductivity σ(c)(ω) of FeTe(0.55)Se(0.45) does not display well-defined Drude response at all temperatures. As temperature decreases, σ(c)(ω) is continuously suppressed. The incoherent c-axis response is found to be related to the strong dissipation in the ab-plane transport: a pattern that holds true for various correlated materials as well as FeTe(0.55)Se(0.45).

7.
Nat Mater ; 7(12): 960-5, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18997775

RESUMO

The search for the coexistence between superconductivity and other collective electronic states in many instances promoted the discovery of novel states of matter. The manner in which the different types of electronic order combine remains an ongoing puzzle. 1T-TaS(2) is a layered material, and the only transition-metal dichalcogenide (TMD) known to develop the Mott phase. Here, we show the appearance of a series of low-temperature electronic states in 1T-TaS(2) with pressure: the Mott phase melts into a textured charge-density wave (CDW); superconductivity develops within the CDW state, and survives to very high pressures, insensitive to subsequent disappearance of the CDW state and, surprisingly, also the strong changes in the normal state. This is also the first reported case of superconductivity in a pristine 1T-TMD compound. We demonstrate that superconductivity first develops within the state marked by a commensurability-driven, Coulombically frustrated, electronic phase separation.

8.
Phys Rev Lett ; 96(18): 186402, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16712380

RESUMO

The correlation-driven metal-insulator transition (MIT) of BaVS(3) was studied by polarized infrared spectroscopy. In the metallic state two types of electrons coexist at the Fermi energy: the quasi-1D metallic transport of A(1g) electrons is superimposed on the isotropic hopping conduction of localized E(g) electrons. The "bad-metal" character and the weak anisotropy are the consequences of the large effective mass m(eff) approximately 7 m(e) and scattering rate Gamma > or = 160 meV of the quasiparticles in the A(1g) band. There is a pseudogap above T(MI) = 69 K, and in the insulating phase the gap follows the BCS-like temperature dependence of the structural order parameter with Delta(ch) approximately 42 meV in the ground state. The MIT is described in terms of a weakly coupled two-band model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...